| | | | al Screw - 2 | | | d (mm) | | I | | | al Screw - | | | N (mm) | |-------|------------|---|-----------------------------|------------|--------------------|-------------------|---------------|-------|------------|--|----------------------------|-------|--------------|-------------------| | R TO | Roof Pitch | Height | H/d | Zone | SPAI
Proline 35 | N (mm) Proline 50 | WR | TC | Roof Pitch | Height | H/d | Zone | Proline 35 | N (mm) Proline 50 | | | | 0≤z≤5m | h/d ≤ 0.5
h/d > 0.5 | | 1101
1111 | 1429
1457 | | | 0≤α<5° | 0≤z≤5m | h/d ≤ 0.5
h/d > 0.5 | | 962
970 | 1065
1085 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>1005</td><td>1169</td><td></td><td></td><td>5m<z≤10m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>874</td><td>874</td></z≤10m<></td></z≤10m<> | h/d ≤ 0.5 | All | 1005 | 1169 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>874</td><td>874</td></z≤10m<> | h/d ≤ 0. | 5 All | 874 | 874 | | | 2° | | h/d > 0.5
$h/d \le 0.5$ | | 1013
958 | 1192
1055 | | | | | h/d > 0.:
h/d ≤ 0.: | | 885
789 | 890
789 | | | 0≤α<5° | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>966</td><td>1075</td><td></td><td rowspan="8">TC2</td><td>10m<z≤15m< td=""><td>h/d > 0.</td><td></td><td>804</td><td>804</td></z≤15m<></td></z≤15m<> | h/d > 0.5 | All | 966 | 1075 | | TC2 | | 10m <z≤15m< td=""><td>h/d > 0.</td><td></td><td>804</td><td>804</td></z≤15m<> | h/d > 0. | | 804 | 804 | | | 0 | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td>All</td><td>932</td><td>994</td><td rowspan="5"></td><td>15m<z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td></td><td>744</td><td>744</td></z≤20m<></td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | All | 932 | 994 | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td></td><td>744</td><td>744</td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | | 744 | 744 | | | | 00 4 400 | $h/d \ge 0.5$ | All | 940
899 | 1013
921 | | | | 20 4 420 | h/d ≤ 0. | | 758
690 | 758
690 | | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td></td><td>907</td><td>939</td><td></td><td>20m<z≤30m< td=""><td>h/d > 0.</td><td>5 All</td><td>703</td><td>703</td></z≤30m<></td></z≤30m<> | h/d > 0.5 | | 907 | 939 | | | | 20m <z≤30m< td=""><td>h/d > 0.</td><td>5 All</td><td>703</td><td>703</td></z≤30m<> | h/d > 0. | 5 All | 703 | 703 | | | | 0≤z≤5m | h/d ≤ 0.5
h/d > 0.5 | All | 1101
1111 | 1429
1457 | | | 5≤α<10° | 0≤z≤5m | h/d ≤ 0.:
h/d > 0.: | | 962
970 | 1065
1085 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>1005</td><td>1169</td><td>5m<z≤10m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>874</td><td>874</td></z≤10m<></td></z≤10m<> | h/d ≤ 0.5 | All | 1005 | 1169 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>874</td><td>874</td></z≤10m<> | h/d ≤ 0. | 5 All | 874 | 874 | | | .01 | | h/d > 0.5
h/d ≤ 0.5 | All | 1013
958 | 1192
1055 | | | | | h/d > 0.9
h/d ≤ 0.9 | | 885
789 | 890
789 | | 1C2 | 5≤α<10° | 10m <z≤15m< td=""><td>h/d > 0.5</td><td></td><td>966</td><td>1075</td><td rowspan="7"></td><td>10m<z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>804</td><td>804</td></z≤15m<></td></z≤15m<> | h/d > 0.5 | | 966 | 1075 | | | | 10m <z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>804</td><td>804</td></z≤15m<> | h/d > 0. | 5 All | 804 | 804 | | | 22 | 15m <z≤20m< td=""><td>$h/d \le 0.5$$h/d > 0.5$</td><td>All</td><td>932
940</td><td>994
1013</td><td></td><td>2</td><td>15m<z≤20m< td=""><td>$h/d \le 0.5$
h/d > 0.5</td><td></td><td>744
758</td><td>744
758</td></z≤20m<></td></z≤20m<> | $h/d \le 0.5$ $h/d > 0.5$ | All | 932
940 | 994
1013 | | | 2 | 15m <z≤20m< td=""><td>$h/d \le 0.5$
h/d > 0.5</td><td></td><td>744
758</td><td>744
758</td></z≤20m<> | $h/d \le 0.5$
h/d > 0.5 | | 744
758 | 744
758 | | | | 20m <z≤30m< td=""><td>$h/d \ge 0.5$</td><td>All</td><td>899</td><td>921</td><td></td><td rowspan="9">10≤α≤30</td><td>20m<z≤30m< td=""><td>h/d ≤ 0.</td><td></td><td>690</td><td>690</td></z≤30m<></td></z≤30m<> | $h/d \ge 0.5$ | All | 899 | 921 | | | 10≤α≤30 | 20m <z≤30m< td=""><td>h/d ≤ 0.</td><td></td><td>690</td><td>690</td></z≤30m<> | h/d ≤ 0. | | 690 | 690 | | | | 20m<2≤30m | h/d > 0.5 | All | 907 | 939 | | | | 20m<2≤30m | h/d > 0. | | 703 | 703 | | | | 0≤z≤5m | $h/d \le 0.5$
h/d > 0.5 | | 1024
1050 | 1220
1288 | | | | 0≤z≤5m | h/d ≤ 0.:
h/d > 0.: | | 895
917 | 911
961 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>934</td><td>1000</td><td></td><td>5m<z≤10m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>749</td><td>749</td></z≤10m<></td></z≤10m<> | h/d ≤ 0.5 | All | 934 | 1000 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>749</td><td>749</td></z≤10m<> | h/d ≤ 0. | 5 All | 749 | 749 | | | 230 | | h/d > 0.5
$h/d \le 0.5$ | All | 958
891 | 1055
903 | | | | | h/d > 0.5
$h/d \le 0.5$ | | 789
677 | 789
677 | | | 10≤α≤30 | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>913</td><td>952</td><td></td><td></td><td>10m<z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>713</td><td>713</td></z≤15m<></td></z≤15m<> | h/d > 0.5 | All | 913 | 952 | | | | 10m <z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>713</td><td>713</td></z≤15m<> | h/d > 0. | 5 All | 713 | 713 | | | _ | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td>All
All</td><td>851
889</td><td>851
898</td><td></td><td></td><td>15m<z≤20m< td=""><td>h/d ≤ 0.:
h/d > 0.:</td><td></td><td>638
673</td><td>638
673</td></z≤20m<></td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | All
All | 851
889 | 851
898 | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.:
h/d > 0.:</td><td></td><td>638
673</td><td>638
673</td></z≤20m<> | h/d ≤ 0.:
h/d > 0.: | | 638
673 | 638
673 | | | | 20m/7/20 | $h/d \ge 0.5$ $h/d \le 0.5$ | | 789 | 789 | | | | 20m/3/20- | h/d ≤ 0. | 5 All | 592 | 592 | | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>832</td><td>832</td><td></td><td></td><td>20m<z≤30m< td=""><td>h/d > 0.</td><td>5 All</td><td>624</td><td>624</td></z≤30m<></td></z≤30m<> | h/d > 0.5 | All | 832 | 832 | | | | 20m <z≤30m< td=""><td>h/d > 0.</td><td>5 All</td><td>624</td><td>624</td></z≤30m<> | h/d > 0. | 5 All | 624 | 624 | | | | 0≤z≤5m | $h/d \le 0.5$
h/d > 0.5 | All | 1151
1161 | 1560
1574 | | | 0≤α<5° | 0≤z≤5m | $h/d \le 0.5$
h/d > 0.5 | | 1005
1014 | 1170
1193 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>1090</td><td>1396</td><td></td><td rowspan="2"></td><td>5m<z≤10m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>952</td><td>1040</td></z≤10m<></td></z≤10m<> | h/d ≤ 0.5 | All | 1090 | 1396 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>952</td><td>1040</td></z≤10m<> | h/d ≤ 0. | 5 All | 952 | 1040 | | | 0≤α<5° | | h/d > 0.5
$h/d \le 0.5$ | | 1099
1035 | 1423
1247 | | | | | h/d > 0.
$h/d \le 0.$ | | 960
904 | 1060
931 | | | | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>1044</td><td>1271</td><td></td><td></td><td>10m<z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>912</td><td>949</td></z≤15m<></td></z≤15m<> | h/d > 0.5 | All | 1044 | 1271 | | | | 10m <z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>912</td><td>949</td></z≤15m<> | h/d > 0. | 5 All | 912 | 949 | | | | 15m <z≤20m< td=""><td>$h/d \le 0.5$
h/d > 0.5</td><td>All
All</td><td>995
1004</td><td>1145
1167</td><td></td><td rowspan="7">TC2.5</td><td>15m<z≤20m< td=""><td>h/d ≤ 0.:
h/d > 0.:</td><td></td><td>856
872</td><td>856
872</td></z≤20m<></td></z≤20m<> | $h/d \le 0.5$
h/d > 0.5 | All
All | 995
1004 | 1145
1167 | | TC2.5 | | 15m <z≤20m< td=""><td>h/d ≤ 0.:
h/d > 0.:</td><td></td><td>856
872</td><td>856
872</td></z≤20m<> | h/d ≤ 0.:
h/d > 0.: | | 856
872 | 856
872 | | | | 20m <z≤30m< td=""><td>h/d ≤ 0.5</td><td></td><td>949</td><td>1034</td><td rowspan="11">Wind Region B</td><td>20m<z≤30m< td=""><td>h/d ≤ 0.</td><td>_</td><td>774</td><td>774</td></z≤30m<></td></z≤30m<> | h/d ≤ 0.5 | | 949 | 1034 | Wind Region B | | | 20m <z≤30m< td=""><td>h/d ≤ 0.</td><td>_</td><td>774</td><td>774</td></z≤30m<> | h/d ≤ 0. | _ | 774 | 774 | | | | 2011-2230111 | h/d > 0.5 | | 957 | 1054 | | | | 2011 - 2 30111 | h/d > 0.5 | | 788 | 788 | | | | 0≤z≤5m | $h/d \le 0.5$ $h/d > 0.5$ | All | 1151
1161 | 1560
1574 | | | 5≤α<10° | 0≤z≤5m | $h/d \le 0.5$
h/d > 0.5 | _ | 1005
1014 | 1170
1193 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>1090</td><td>1396</td><td>5m<z≤10m< td=""><td>h/d ≤ 0.</td><td></td><td>952</td><td>1040</td></z≤10m<></td></z≤10m<> | h/d ≤ 0.5 | All | 1090 | 1396 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.</td><td></td><td>952</td><td>1040</td></z≤10m<> | h/d ≤ 0. | | 952 | 1040 | | TC2 5 | .10° | 10 | h/d > 0.5
$h/d \le 0.5$ | All | 1099
1035 | 1423
1247 | | | | 10 | h/d > 0.
$h/d \le 0.$ | | 960
904 | 1060
931 | | [] | 5≤α<10° | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>1044</td><td>1271</td><td>10m<z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>912</td><td>949</td></z≤15m<></td></z≤15m<> | h/d > 0.5 | All | 1044 | 1271 | | | | 10m <z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>912</td><td>949</td></z≤15m<> | h/d > 0. | 5 All | 912 | 949 | | | Ψ | 15m <z≤20m< td=""><td>$h/d \le 0.5$
h/d > 0.5</td><td>All</td><td>995
1004</td><td>1145
1167</td><td></td><td>Ŋ</td><td>15m<z≤20m< td=""><td>$h/d \le 0.5$
h/d > 0.5</td><td></td><td>856
872</td><td>856
872</td></z≤20m<></td></z≤20m<> | $h/d \le 0.5$
h/d > 0.5 | All | 995
1004 | 1145
1167 | | | Ŋ | 15m <z≤20m< td=""><td>$h/d \le 0.5$
h/d > 0.5</td><td></td><td>856
872</td><td>856
872</td></z≤20m<> | $h/d \le 0.5$
h/d > 0.5 | | 856
872 | 856
872 | | | | 20m <z≤30m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>949</td><td>1034</td><td rowspan="6"></td><td></td><td>20m<z≤30m< td=""><td>h/d ≤ 0.</td><td></td><td>774</td><td>774</td></z≤30m<></td></z≤30m<> | h/d ≤ 0.5 | All | 949 | 1034 | | | | 20m <z≤30m< td=""><td>h/d ≤ 0.</td><td></td><td>774</td><td>774</td></z≤30m<> | h/d ≤ 0. | | 774 | 774 | | | | 2011-230111 | h/d > 0.5 | All | 957 | 1054 | | | 10≤α≤30 | 2011-230111 | h/d > 0.5
$h/d \le 0.5$ | _ | 788 | 788 | | | | 0≤z≤5m | $h/d \le 0.5$
h/d > 0.5 | All | 1070
1097 | 1342
1418 | | | | 0≤z≤5m | h/d > 0. | 5 All | 935
958 | 1001
1056 | | | 10≤α≤30 | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>1014</td><td>1192</td><td>5m<z≤10m< td=""><td>h/d ≤ 0.</td><td></td><td>885</td><td>891</td></z≤10m<></td></z≤10m<> | h/d ≤ 0.5 | All | 1014 | 1192 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.</td><td></td><td>885</td><td>891</td></z≤10m<> | h/d ≤ 0. | | 885 | 891 | | | | 10 115 | h/d > 0.5
$h/d \le 0.5$ | All | 1039
963 | 1259
1066 | | | | 10 115 | h/d > 0.
$h/d \le 0.$ | | 908
798 | 939
798 | | | | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>987</td><td>1125</td><td></td><td>10m<z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>841</td><td>841</td></z≤15m<></td></z≤15m<> | h/d > 0.5 | All | 987 | 1125 | | | | 10m <z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>841</td><td>841</td></z≤15m<> | h/d > 0. | 5 All | 841 | 841 | | | _ | 15m <z≤20m< td=""><td>$h/d \le 0.5$
h/d > 0.5</td><td>All</td><td>925
949</td><td>979
1033</td><td></td><td></td><td>~</td><td>15m<z≤20m< td=""><td>h/d ≤ 0.:
h/d > 0.:</td><td></td><td>733
773</td><td>733
773</td></z≤20m<></td></z≤20m<> | $h/d \le 0.5$
h/d > 0.5 | All | 925
949 | 979
1033 | | | ~ | 15m <z≤20m< td=""><td>h/d ≤ 0.:
h/d > 0.:</td><td></td><td>733
773</td><td>733
773</td></z≤20m<> | h/d ≤ 0.:
h/d > 0.: | | 733
773 | 733
773 | | | | 20m <z≤30m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>883</td><td>885</td><td></td><td rowspan="3"></td><td rowspan="6">0sa<5°</td><td>20m<z≤30m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>664</td><td>664</td></z≤30m<></td></z≤30m<> | h/d ≤ 0.5 | All | 883 | 885 | | | 0sa<5° | 20m <z≤30m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>664</td><td>664</td></z≤30m<> | h/d ≤ 0. | 5 All | 664 | 664 | | | | | h/d > 0.5
h/d ≤ 0.5 | | 905 | 934 | | | | 20111 -Z=30111 | h/d > 0.5
h/d ≤ 0.5 | | 700
1052 | 700 | | | | 0≤z≤5m | $h/d \le 0.5$ | All | 1205
1216 | 1634
1648 | | | | 0≤z≤5m | h/d ≤ 0.5 | | 1052
1062 | 1293
1318 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>1205</td><td>1634</td><td>, </td><td></td><td>5m<z≤10m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>1052</td><td>1293</td></z≤10m<></td></z≤10m<> | h/d ≤ 0.5 | All | 1205 | 1634 | , | | | 5m <z≤10m< td=""><td>h/d ≤ 0.</td><td>5 All</td><td>1052</td><td>1293</td></z≤10m<> | h/d ≤ 0. | 5 All | 1052 | 1293 | | | <5° | 10 | h/d > 0.5
$h/d \le 0.5$ | All | 1216
1126 | 1648
1499 | | | | 10 | h/d > 0.5
$h/d \le 0.5$ | 5 All | 1062
983 | 1318
1116 | | | 0≤α<5° | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>1136</td><td>1528</td><td></td><td></td><td>10m<z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>992</td><td>1137</td></z≤15m<></td></z≤15m<> | h/d > 0.5 | All | 1136 | 1528 | | | | 10m <z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>992</td><td>1137</td></z≤15m<> | h/d > 0. | 5 All | 992 | 1137 | | | | 15m <z≤20m< td=""><td>$h/d \le 0.5$
h/d > 0.5</td><td>All</td><td>1067
1076</td><td>1333
1359</td><td></td><td></td><td>-</td><td>15m<z≤20m< td=""><td>$h/d \le 0.5$
h/d > 0.5</td><td>_</td><td>932
940</td><td>994</td></z≤20m<></td></z≤20m<> | $h/d \le 0.5$
h/d > 0.5 | All | 1067
1076 | 1333
1359 | | | - | 15m <z≤20m< td=""><td>$h/d \le 0.5$
h/d > 0.5</td><td>_</td><td>932
940</td><td>994</td></z≤20m<> | $h/d \le 0.5$
h/d > 0.5 | _ | 932
940 | 994 | | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>1005</td><td>1169</td><td></td><td></td><td></td><td>20m<z≤30m< td=""><td>h/d > 0.</td><td>5 All</td><td>874</td><td>874</td></z≤30m<></td></z≤30m<> | h/d > 0.5 | All | 1005 | 1169 | | | | 20m <z≤30m< td=""><td>h/d > 0.</td><td>5 All</td><td>874</td><td>874</td></z≤30m<> | h/d > 0. | 5 All | 874 | 874 | | | | | h/d > 0.5
$h/d \le 0.5$ | All
All | 1013
1205 | 1192
1634 | | | 5≤α<10° | | h/d > 0.
$h/d \le 0.$ | | 885
1052 | 890
1293 | | | | 0≤z≤5m | h/d > 0.5 | All | 1216 | 1648 | | | | 0≤z≤5m | h/d > 0.5 | | 1062 | 1318 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>1205</td><td>1634</td><td></td><td></td><td>5m<z≤10m< td=""><td>h/d ≤ 0.5</td><td>5 All</td><td>1052</td><td>1293</td></z≤10m<></td></z≤10m<> | h/d ≤ 0.5 | All | 1205 | 1634 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>5 All</td><td>1052</td><td>1293</td></z≤10m<> | h/d ≤ 0.5 | 5 All | 1052 | 1293 | | 63 | :10° | | h/d > 0.5
$h/d \le 0.5$ | All | 1216
1126 | 1648
1499 | | ŭ | | | h/d > 0.
$h/d \le 0.$ | | 1062
983 | 1318
1116 | | 133 | 5≤α<10° | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>1136</td><td>1528</td><td></td><td>753</td><td>10m<z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>992</td><td>1137</td></z≤15m<></td></z≤15m<> | h/d > 0.5 | All | 1136 | 1528 | | 753 | | 10m <z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>992</td><td>1137</td></z≤15m<> | h/d > 0. | 5 All | 992 | 1137 | | | Ω | 15m <z≤20m< td=""><td>$h/d \le 0.5$$h/d > 0.5$</td><td>All</td><td>1067
1076</td><td>1333
1359</td><td></td><td></td><td>ω</td><td>15m<z≤20m< td=""><td>h/d ≤ 0.:
h/d > 0.:</td><td></td><td>932
940</td><td>994</td></z≤20m<></td></z≤20m<> | $h/d \le 0.5$ $h/d > 0.5$ | All | 1067
1076 | 1333
1359 | | | ω | 15m <z≤20m< td=""><td>h/d ≤ 0.:
h/d > 0.:</td><td></td><td>932
940</td><td>994</td></z≤20m<> | h/d ≤ 0.:
h/d > 0.: | | 932
940 | 994 | | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td></td><td>1005</td><td>1169</td><td></td><td rowspan="5"></td><td></td><td>20m<z≤30m< td=""><td>h/d > 0.</td><td>5 All</td><td>874</td><td>874</td></z≤30m<></td></z≤30m<> | h/d > 0.5 | | 1005 | 1169 | | | | 20m <z≤30m< td=""><td>h/d > 0.</td><td>5 All</td><td>874</td><td>874</td></z≤30m<> | h/d > 0. | 5 All | 874 | 874 | | | | | h/d > 0.5
h/d ≤ 0.5 | All | 1013 | 1192 | | | 10≤α≤30 | | h/d > 0.:
h/d ≤ 0.: | _ | 885 | 890 | | | | 0≤z≤5m | $h/d \le 0.5$ | All | 1121
1149 | 1485
1558 | | | | 0≤z≤5m | h/d ≤ 0.5 | | 979
1003 | 1105
1167 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>1121</td><td>1485</td><td>5m<z≤10m< td=""><td>h/d ≤ 0.</td><td>All</td><td>979</td><td>1105</td></z≤10m<></td></z≤10m<> | h/d ≤ 0.5 | All | 1121 | 1485 | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.</td><td>All</td><td>979</td><td>1105</td></z≤10m<> | h/d ≤ 0. | All | 979 | 1105 | | | <30 | | h/d > 0.5
$h/d \le 0.5$ | All | 1149
1047 | 1558
1279 | | | | | h/d > 0.
$h/d \le 0.$ | | 1003
914 | 1167
954 | | | 10≤α≤30 | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>1073</td><td>1351</td><td></td><td>10m<z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>937</td><td>1007</td></z≤15m<></td></z≤15m<> | h/d > 0.5 | All | 1073 | 1351 | | | | 10m <z≤15m< td=""><td>h/d > 0.</td><td>5 All</td><td>937</td><td>1007</td></z≤15m<> | h/d > 0. | 5 All | 937 | 1007 | | | = | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td></td><td>993</td><td>1139</td><td></td><td rowspan="3"></td><td>15m<z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td></td><td>851
880</td><td>851</td></z≤20m<></td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | | 993 | 1139 | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td></td><td>851
880</td><td>851</td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | | 851
880 | 851 | | | | 20m/=/20 | h/d > 0.5 | All | 1018
934 | 1202
1000 | - | | | 20m/=/20= | h/d > 0.5 | | 889
749 | 898
749 | | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td></td><td>958</td><td>1055</td><td>20m<z≤30m< td=""><td>h/d > 0.</td><td></td><td>789</td><td>789</td></z≤30m<></td></z≤30m<> | h/d > 0.5 | | 958 | 1055 | | | | 20m <z≤30m< td=""><td>h/d > 0.</td><td></td><td>789</td><td>789</td></z≤30m<> | h/d > 0. | | 789 | 789 | | WR | TC | Roof Pitch | Height | H/d | 2100 Mc | SPAN | | |---------------|-------|------------|---|----------------------------|------------|------------|------------| | •••• | | | | h/d ≤ 0.5 | All | Proline 35 | Proline 50 | | | | | 0≤z≤5m | h/d > 0.5 | All | 771
786 | 771
786 | | | | | En- 4- 440 | h/d ≤ 0.5 | All | 634 | 634 | | | | | 5m <z≤10m< td=""><td>h/d > 0.5</td><td>All</td><td>646</td><td>646</td></z≤10m<> | h/d > 0.5 | All | 646 | 646 | | | | 0≤α<5° | 10m <z≤15m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>574</td><td>574</td></z≤15m<> | h/d ≤ 0.5 | All | 574 | 574 | | | |) so | 10111-2=10111 | h/d > 0.5 | All | 584 | 584 | | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>541</td><td>541</td></z≤20m<> | h/d ≤ 0.5 | All | 541 | 541 | | | | | | h/d > 0.5 | All | 551 | 551 | | | | | 20m <z≤30m< td=""><td>$h/d \le 0.5$$h/d > 0.5$</td><td>All
All</td><td>502
512</td><td>502
512</td></z≤30m<> | $h/d \le 0.5$ $h/d > 0.5$ | All
All | 502
512 | 502
512 | | | | | | h/d ≤ 0.5 | All | 771 | 771 | | | | | 0≤z≤5m | h/d > 0.5 | All | 786 | 786 | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>634</td><td>634</td></z≤10m<> | h/d ≤ 0.5 | All | 634 | 634 | | | | °C | 5111~2≤10111 | h/d > 0.5 | All | 646 | 646 | | | TC2 | 5≤α<10° | 10m <z≤15m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>574</td><td>574</td></z≤15m<> | h/d ≤ 0.5 | All | 574 | 574 | | | Η | 250 | | h/d > 0.5
h/d ≤ 0.5 | All | 584 | 584 | | | | | 15m <z≤20m< td=""><td>$h/d \ge 0.5$</td><td>All
All</td><td>541
551</td><td>541
551</td></z≤20m<> | $h/d \ge 0.5$ | All
All | 541
551 | 541
551 | | | | | 00 100 | h/d ≤ 0.5 | All | 502 | 502 | | | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>512</td><td>512</td></z≤30m<> | h/d > 0.5 | All | 512 | 512 | | | | | 0≤z≤5m | h/d ≤ 0.5 | All | 661 | 661 | | | | | ひっとうり | h/d > 0.5 | All | 697 | 697 | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>544</td><td>544</td></z≤10m<> | h/d ≤ 0.5 | All | 544 | 544 | | | | 99 | | h/d > 0.5 | All | 574 | 574 | | | | 10≤α≤30 | 10m <z≤15m< td=""><td>$h/d \le 0.5$$h/d > 0.5$</td><td>All
All</td><td>493
519</td><td>493
519</td></z≤15m<> | $h/d \le 0.5$ $h/d > 0.5$ | All
All | 493
519 | 493
519 | | | | 10; | | $h/d \ge 0.5$ | All | 465 | 465 | | | | | 15m <z≤20m< td=""><td>h/d > 0.5</td><td>All</td><td>490</td><td>490</td></z≤20m<> | h/d > 0.5 | All | 490 | 490 | | | | | 20m <z≤30m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>432</td><td>432</td></z≤30m<> | h/d ≤ 0.5 | All | 432 | 432 | | | | | ∠∪111~Z≥3UM | h/d > 0.5 | All | 455 | 455 | | | | | 0≤z≤5m | h/d ≤ 0.5 | All | 847 | 847 | | | | | | h/d > 0.5 | All | 863 | 863 | | | | | 5m <z≤10m< td=""><td>$h/d \le 0.5$$h/d > 0.5$</td><td>All
All</td><td>754
768</td><td>754</td></z≤10m<> | $h/d \le 0.5$ $h/d > 0.5$ | All
All | 754
768 | 754 | | | | ညှိ | | $h/d \ge 0.5$ | All | 675 | 768
675 | | | | 0≤α<5° | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>688</td><td>688</td></z≤15m<> | h/d > 0.5 | All | 688 | 688 | | | | | 45 | h/d ≤ 0.5 | All | 621 | 621 | | | | | 15m <z≤20m< td=""><td>h/d > 0.5</td><td>All</td><td>633</td><td>633</td></z≤20m<> | h/d > 0.5 | All | 633 | 633 | | | | | 20m <z≤30m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>563</td><td>563</td></z≤30m<> | h/d ≤ 0.5 | All | 563 | 563 | | | | | 2011 -2=00111 | h/d > 0.5 | All | 573 | 573 | | | | 5≤α<10° | 0≤z≤5m | h/d ≤ 0.5 | All | 847 | 847 | | | | | | $h/d > 0.5$ $h/d \le 0.5$ | All
All | 863
754 | 863
754 | | Wind Region C | | | 5m <z≤10m< td=""><td>h/d > 0.5</td><td>All</td><td>768</td><td>768</td></z≤10m<> | h/d > 0.5 | All | 768 | 768 | | èg | TC2.5 | | 10m <z≤15m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>675</td><td>675</td></z≤15m<> | h/d ≤ 0.5 | All | 675 | 675 | | R. | 7 | | 10111<2515111 | h/d > 0.5 | All | 688 | 688 | | /jii | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>621</td><td>621</td></z≤20m<> | h/d ≤ 0.5 | All | 621 | 621 | | > | | | | $h/d > 0.5$ $h/d \le 0.5$ | All | 633 | 633 | | | | | 20m <z≤30m< td=""><td>$h/d \ge 0.5$</td><td>All
All</td><td>563
573</td><td>563
573</td></z≤30m<> | $h/d \ge 0.5$ | All
All | 563
573 | 563
573 | | | | | 0.1.15 | h/d ≤ 0.5 | All | 726 | 726 | | | | | 0≤z≤5m | h/d > 0.5 | All | 765 | 765 | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>646</td><td>646</td></z≤10m<> | h/d ≤ 0.5 | All | 646 | 646 | | | | 30 | 0111 -22 - 10111 | h/d > 0.5 | All | 681 | 681 | | | | 10sas30 | 10m <z≤15m< td=""><td>$h/d \le 0.5$</td><td>All</td><td>580</td><td>580</td></z≤15m<> | $h/d \le 0.5$ | All | 580 | 580 | | | | 10≤ | | $h/d > 0.5$ $h/d \le 0.5$ | All
All | 611
533 | 611
533 | | | | | 15m <z≤20m< td=""><td>$h/d \ge 0.5$</td><td>All</td><td>562</td><td>533</td></z≤20m<> | $h/d \ge 0.5$ | All | 562 | 533 | | | | | 20 | h/d ≤ 0.5 | All | 483 | 483 | | - | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>509</td><td>509</td></z≤30m<> | h/d > 0.5 | All | 509 | 509 | | | | | 0≤z≤5m | h/d ≤ 0.5 | All | 905 | 934 | | | | 0≤α<5° | JUZZUIII | h/d > 0.5 | All | 913 | 952 | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>905</td><td>934</td></z≤10m<> | h/d ≤ 0.5 | All | 905 | 934 | | | | | | $h/d > 0.5$ $h/d \le 0.5$ | All | 913 | 952 | | | | | 10m <z≤15m< td=""><td>$h/d \le 0.5$$h/d > 0.5$</td><td>All
All</td><td>807
823</td><td>807
823</td></z≤15m<> | $h/d \le 0.5$ $h/d > 0.5$ | All
All | 807
823 | 807
823 | | | | | | $h/d \ge 0.5$ | All | 721 | 721 | | | | | 15m <z≤20m< td=""><td>h/d > 0.5</td><td>All</td><td>734</td><td>734</td></z≤20m<> | h/d > 0.5 | All | 734 | 734 | | | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>634</td><td>634</td></z≤30m<> | h/d > 0.5 | All | 634 | 634 | | | | | ZUIIINZSJUM | h/d > 0.5 | All | 646 | 646 | | | | | 0≤z≤5m | h/d ≤ 0.5 | All | 905 | 934 | | | | | | h/d > 0.5 | All | 913 | 952 | | | | | 5m <z≤10m< td=""><td>$h/d \le 0.5$
h/d > 0.5</td><td>All</td><td>905</td><td>934</td></z≤10m<> | $h/d \le 0.5$
h/d > 0.5 | All | 905 | 934 | | | 8 | 10。 | | $h/d > 0.5$ $h/d \le 0.5$ | All
All | 913
807 | 952
807 | | | TC3 | 5≤α<10° | 10m <z≤15m< td=""><td>$h/d \ge 0.5$</td><td>All</td><td>823</td><td>823</td></z≤15m<> | $h/d \ge 0.5$ | All | 823 | 823 | | | • | 55 | 15m /=/00 | h/d ≤ 0.5 | All | 721 | 721 | | | | | 15m <z≤20m< td=""><td>h/d > 0.5</td><td>All</td><td>734</td><td>734</td></z≤20m<> | h/d > 0.5 | All | 734 | 734 | | | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>634</td><td>634</td></z≤30m<> | h/d > 0.5 | All | 634 | 634 | | | | | 2011 -Z=30111 | h/d > 0.5 | All | 646 | 646 | | | | | 0≤z≤5m | h/d ≤ 0.5 | All | 800 | 800 | | | | | | $h/d > 0.5$ $h/d \le 0.5$ | All | 844 | 844 | | | | | 5m <z≤10m< td=""><td>$h/d \le 0.5$</td><td>All
All</td><td>800
844</td><td>800
844</td></z≤10m<> | $h/d \le 0.5$ | All
All | 800
844 | 800
844 | | | | 58 | 40 | h/d ≤ 0.5 | All | 692 | 692 | | | | 10≤α≤30 | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>730</td><td>730</td></z≤15m<> | h/d > 0.5 | All | 730 | 730 | | | | + | 15m <z≤20m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>618</td><td>618</td></z≤20m<> | h/d ≤ 0.5 | All | 618 | 618 | | | | | 1011174240111 | h/d > 0.5 | All | 652 | 652 | | - 1 | | 1 | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>544</td><td>544</td></z≤30m<> | h/d > 0.5 | All | 544 | 544 | | | то. | Poof Ditch | | sal Screw - 21 | | SPAN | (mm) | DESIGN PARAME | | | | |----|-------|------------|---|------------------------|------|------------|------------|--|--|--|--| | WR | TC | Roof Pitch | Height | H/d | Zone | Proline 35 | Proline 50 | WIND PARAMETERS ARE IN ACC | | | | | | | | 0≤z≤5m | h/d ≤ 0.5
h/d > 0.5 | All | 547
558 | 547
558 | TABLES ARE SUITABLE FOR BUI | | | | | | | 0≤α<5° | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>451</td><td>451</td><td>ASSUMPTION MANUAL ATTACHE</td></z≤10m<> | h/d ≤ 0.5 | All | 451 | 451 | ASSUMPTION MANUAL ATTACHE | | | | | | | | | h/d > 0.5
h/d ≤ 0.5 | All | 460
408 | 460
408 | REGION = A, B, C, D | | | | | | | | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>416</td><td>416</td><td>IMPORTANCE LEVEL = 2</td></z≤15m<> | h/d > 0.5 | All | 416 | 416 | IMPORTANCE LEVEL = 2 | | | | | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td>All</td><td>386
393</td><td>386
393</td><td>DESIGN LIFE = 25 YEARS</td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | All | 386
393 | 386
393 | DESIGN LIFE = 25 YEARS | | | | | | | | 20m <z≤30m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>358</td><td>358</td><td>ANNUAL PROBABILITY = 1/200</td></z≤30m<> | h/d ≤ 0.5 | All | 358 | 358 | ANNUAL PROBABILITY = 1/200 | | | | | | | | 20111~2≦30111 | h/d > 0.5 | All | 365 | 365 | | | | | | | | | 0≤z≤5m | h/d ≤ 0.5
h/d > 0.5 | All | 547
558 | 547
558 | GENERAL | | | | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>451</td><td>451</td><td>SPAN TABLE TO BE READ W</td></z≤10m<> | h/d ≤ 0.5 | All | 451 | 451 | SPAN TABLE TO BE READ W | | | | | | TC2 | 5≤α<10° | | h/d > 0.5
h/d ≤ 0.5 | All | 460
408 | 460
408 | REVIEW OF SUPPORTING BY | | | | | | | | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>416</td><td>416</td><td>REVIEW OF ROOF SHEETING</td></z≤15m<> | h/d > 0.5 | All | 416 | 416 | REVIEW OF ROOF SHEETING | | | | | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td>All</td><td>386
393</td><td>386
393</td><td>THESE SPANS ARE ONLY A</td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | All | 386
393 | 386
393 | THESE SPANS ARE ONLY A | | | | | | | | 20m <z≤30m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>358</td><td>358</td><td>BELOW FOR SPAN REDUCT</td></z≤30m<> | h/d ≤ 0.5 | All | 358 | 358 | BELOW FOR SPAN REDUCT | | | | | | | | 2011-23011 | h/d > 0.5
h/d ≤ 0.5 | All | 365 | 365 | REVIEW OF SOLAR PANEL S | | | | | | | 10≤α≤30 | 0≤z≤5m | h/d ≥ 0.5 | All | 470
495 | 470
495 | A-FRAMES TO BE FIXED TO | | | | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>388</td><td>388</td><td> NOTED IN THE TABLE. ALL FIXTURES TO BE INSTA </td></z≤10m<> | h/d ≤ 0.5 | All | 388 | 388 | NOTED IN THE TABLE. ALL FIXTURES TO BE INSTA | | | | | | | | 10 | h/d > 0.5
h/d ≤ 0.5 | All | 408
351 | 408
351 | ALLOWANCE HAS BEEN MAI | | | | | | | | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>370</td><td>370</td><td>2 RAILS MINIMUM ARE TO BI</td></z≤15m<> | h/d > 0.5 | All | 370 | 370 | 2 RAILS MINIMUM ARE TO BI | | | | | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td>All</td><td>331
349</td><td>331
349</td><td>LENGTH FROM THE EDGE.</td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | All | 331
349 | 331
349 | LENGTH FROM THE EDGE. | | | | | | | | 20m <z≤30m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>308</td><td>308</td><td>PANELS TO BE ORIENTATED</td></z≤30m<> | h/d ≤ 0.5 | All | 308 | 308 | PANELS TO BE ORIENTATED | | | | | | | | 20111~2≤30111 | h/d > 0.5 | All | 324 | 324 | • ALL RAILS ARE TO BE JOINE | | | | | | TC2.5 | 0≤α<5° | 0≤z≤5m | h/d ≤ 0.5
h/d > 0.5 | All | 601
612 | 601
612 | Z-14.4-639. | | | | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>535</td><td>535</td><td>ALL RAILS TO SPAN THREE</td></z≤10m<> | h/d ≤ 0.5 | All | 535 | 535 | ALL RAILS TO SPAN THREE | | | | | | | | | h/d > 0.5
h/d ≤ 0.5 | All | 545
480 | 545
480 | MAXIMUM OF 40% OF THE A | | | | | | | | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>489</td><td>489</td><td>ALL RAILS, CLAMPS AND FA</td></z≤15m<> | h/d > 0.5 | All | 489 | 489 | ALL RAILS, CLAMPS AND FA | | | | | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td>All</td><td>442</td><td>442</td><td>DOCUMENTATION.</td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | All | 442 | 442 | DOCUMENTATION. | | | | | | | | 2000 4742000 | h/d ≤ 0.5 | All | 450
401 | 450
401 | FASTENERS FIXED TO TIMB THIS IS IN COMPLIANCE WITH | | | | | | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>408</td><td>408</td><td> THIS IS IN COMPLIANCE WIT FASTENERS FIXED TO TIMB </td></z≤30m<> | h/d > 0.5 | All | 408 | 408 | THIS IS IN COMPLIANCE WIT FASTENERS FIXED TO TIMB | | | | | | | 5≤α<10° | 0≤z≤5m | h/d ≤ 0.5
h/d > 0.5 | All | 601
612 | 601
612 | DIAMETER OF 6.2mm, AND A | | | | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>535</td><td>535</td><td>TIMBER PURLINS MUST HAVE</td></z≤10m<> | h/d ≤ 0.5 | All | 535 | 535 | TIMBER PURLINS MUST HAVE | | | | | | | | | h/d > 0.5
h/d ≤ 0.5 | All | 545
480 | 545
480 | TIMBER PURLINS MUST HAV | | | | | | | | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>489</td><td>489</td><td> FASTENERS FIXED TO COLD </td></z≤15m<> | h/d > 0.5 | All | 489 | 489 | FASTENERS FIXED TO COLD | | | | | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td>All</td><td>442</td><td>442</td><td>DIAMETER OF THE SCREW.</td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | All | 442 | 442 | DIAMETER OF THE SCREW. | | | | | | | | 2000 4742000 | h/d ≤ 0.5 | All | 450
401 | 450
401 | STEEL PURLINS MUST HAVE | | | | | | | 10≤α≤30 | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>408</td><td>408</td><td>STEEL PURLINS MUST HAVE</td></z≤30m<> | h/d > 0.5 | All | 408 | 408 | STEEL PURLINS MUST HAVE | | | | | | | | 0≤z≤5m | h/d ≤ 0.5
h/d > 0.5 | All | 516
543 | 516
543 | PARTRIDGE ENGINEERS Pty | | | | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>460</td><td>460</td><td>USE BY SCHLETTER AUSTRINSTALLATION VERIFICATIO</td></z≤10m<> | h/d ≤ 0.5 | All | 460 | 460 | USE BY SCHLETTER AUSTRINSTALLATION VERIFICATIO | | | | | | | | | h/d > 0.5
h/d ≤ 0.5 | All | 484
413 | 484
413 | NO ALLOWANCE HAS BEEN | | | | | | | | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>435</td><td>435</td><td>INSTALLATION OUTSIDE THIS</td></z≤15m<> | h/d > 0.5 | All | 435 | 435 | INSTALLATION OUTSIDE THIS | | | | | _ | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td>All</td><td>380
400</td><td>380
400</td><td>INSTALLATIONS IN TERRAIN</td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | All | 380
400 | 380
400 | INSTALLATIONS IN TERRAIN | | | | | | | | 20m <z≤30m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>344</td><td>344</td><td>FOLLOWING;</td></z≤30m<> | h/d ≤ 0.5 | All | 344 | 344 | FOLLOWING; | | | | | | | | 2011 - 2200111 | h/d > 0.5
h/d ≤ 0.5 | All | 363
662 | 363
662 | Region A = 18% | | | | | | | | 0≤z≤5m | h/d ≥ 0.5 | All | 662
674 | 674 | Region B = 18% | | | | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>662</td><td>662</td><td>Region C/D = Specific enginee</td></z≤10m<> | h/d ≤ 0.5 | All | 662 | 662 | Region C/D = Specific enginee | | | | | | | <5° | | h/d > 0.5
h/d ≤ 0.5 | All | 674
573 | 674
573 | • REFER TO AS1170.2:2021 SE | | | | | | TC3 | 0<5° | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>584</td><td>584</td><td>SOLAR PANELS HAVE BEEN SOLAR PANELS HAVE BEEN</td></z≤15m<> | h/d > 0.5 | All | 584 | 584 | SOLAR PANELS HAVE BEEN SOLAR PANELS HAVE BEEN | | | | | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td>All</td><td>512
522</td><td>512
522</td><td>FOR THE VARIOUS SPANS A</td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | All | 512
522 | 512
522 | FOR THE VARIOUS SPANS A | | | | | | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>451</td><td>451</td><td> ALL SPANS IN THE TABLE N
ROOF. </td></z≤30m<> | h/d > 0.5 | All | 451 | 451 | ALL SPANS IN THE TABLE N
ROOF. | | | | | | | | 2011-235011 | h/d > 0.5
h/d ≤ 0.5 | All | 460 | 460 | | | | | | | | 5≤α<10° | 0≤z≤5m | h/d ≥ 0.5 | All | 662
674 | 662
674 | REDUCTION FAC | | | | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>662</td><td>662</td><td>FASTENERS</td></z≤10m<> | h/d ≤ 0.5 | All | 662 | 662 | FASTENERS | | | | | | | | | h/d > 0.5
h/d ≤ 0.5 | All | 674
573 | 674
573 | IASTENERS | | | | | | | | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>584</td><td>584</td><td>SPANS FROM THE ABOVE TABL</td></z≤15m<> | h/d > 0.5 | All | 584 | 584 | SPANS FROM THE ABOVE TABL | | | | | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td>All</td><td>512
522</td><td>512
522</td><td>THAN 4 A-FRAMES. WHERE A R</td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | All | 512
522 | 512
522 | THAN 4 A-FRAMES. WHERE A R | | | | | | | | 20m <z<20m< td=""><td>h/d > 0.5</td><td>All</td><td>451</td><td>451</td><td>SHOULD BE MULTIPLIED BY TH</td></z<20m<> | h/d > 0.5 | All | 451 | 451 | SHOULD BE MULTIPLIED BY TH | | | | | | | 10≤α≤30 | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>460</td><td>460</td><td></td></z≤30m<> | h/d > 0.5 | All | 460 | 460 | | | | | | | | | 0≤z≤5m | h/d ≤ 0.5
h/d > 0.5 | All | 568
599 | 568
599 | RAIL SUPPORT REDUCTION FA | | | | | | | | 5m <z≤10m< td=""><td>h/d ≤ 0.5</td><td>All</td><td>568</td><td>568</td><td>NOTE: RAIL MUST SPAN BETWE</td></z≤10m<> | h/d ≤ 0.5 | All | 568 | 568 | NOTE: RAIL MUST SPAN BETWE | | | | | | | | | h/d > 0.5
h/d ≤ 0.5 | All | 599
492 | 599
492 | INOTE. NAIL WOST SPAN BETWE | | | | | | | | 10m <z≤15m< td=""><td>h/d > 0.5</td><td>All</td><td>519</td><td>519</td><td></td></z≤15m<> | h/d > 0.5 | All | 519 | 519 | | | | | | | | | 15m <z≤20m< td=""><td>h/d ≤ 0.5
h/d > 0.5</td><td>All</td><td>440
464</td><td>440</td><td></td></z≤20m<> | h/d ≤ 0.5
h/d > 0.5 | All | 440
464 | 440 | | | | | | | | | 20m <z≤30m< td=""><td>h/d > 0.5</td><td>All</td><td>388</td><td>464
388</td><td>1</td></z≤30m<> | h/d > 0.5 | All | 388 | 464
388 | 1 | | | | | | | | | h/d > 0.5 | | | | | | | | A Frame 30 Degree Tilt - Fixing to substructure - F7 Softwood - Using Using 2/Bremick Vortex Universal Screw - 2100 Modules # **DESIGN PARAMETERS** COPYRIGHT: THE DESIGN AND DETAILS SHOWN ON THIS DRAWING ARE SPECIFIC TO THIS PROJECT ONLY AND MAY NOT BE REPRODUCED IN WHOLE OR IN PART OR BE USED FOR ANY OTHER PROJECT OR PURPOSE WITHOUT THE WRITTEN CONSENT OF PARTRIDGE STRUCTURAL PTY LTD WIND PARAMETERS ARE IN ACCORDANCE WITH AS/NZS1170.2:2021. EARTHQUAKE AND SNOW LOADS ARE EXCLUDED TABLES ARE SUITABLE FOR BUILDINGS INCLUSIVE OF PARAMETERS REFFERED TO IN THE TABLES BELOW AND ASSUMPTION MANUAL ATTACHED. REGION = A, B, C, D Base Wind Speed Region | A | B | C | D Vr(m/s) | 43 | 52 | 61 | 72 #### **GENERAL** SPAN TABLE TO BE READ WITH PARTRIDGE ASSUMPTIONS MANUAL - REVIEW OF SUPPORTING BUILDING FOR STRUCTURAL ADEQUACY TO SUPPORT PANEL INSTALLATION BY OTHERS. - REVIEW OF ROOF SHEETING FOR STRUCTURAL ADEQUACY TO SUPPORT PANEL INSALLATION BY OTHERS. - THESE SPANS ARE ONLY APPLICABLE TO CONTINUOUS RAILS SUPPORTED BY A MINIMUM OF 4 A-FRAMES. SEE BELOW FOR SPAN REDUCTION FACTORS FOR RAILS SUPPORTED BY LESS THAN 4 A-FRAMES. - REVIEW OF SOLAR PANEL STRUCTURAL CAPACITY BY OTHERS. - A-FRAMES TO BE FIXED TO THE SUB STRUCTURE OR ROOF SHEETING WITH THE QUANTITY AND TYPE OF SCREWS NOTED IN THE TABLE. - ALL FIXTURES TO BE INSTALLED TO THE MANUFACTURERS SPECIFICATIONS. - ALLOWANCE HAS BEEN MADE FOR A SOLAR PANEL SELF WEIGHT OF 0.15 kPa. - 2 RAILS MINIMUM ARE TO BE USED FOR ALL WIND REGIONS. RAILS TO BE LOCATED 15%-25% OF THE PANELS - LENGTH FROM THE EDGE. PANELS TO BE ORIENTATED IN THE PORTRAIT POSITION. - ALL RAILS ARE TO BE JOINED WITH RAIL CONNECTORS DOCUMENTED IN SCHLETTER Pty Ltd TECHNICAL ARTICLE - ALL RAILS TO SPAN THREE FULL SPAN MINIMUM (BE SUPPORTED BY MIN 4 FASTENERS). CANTILEVERS TO BE A MAXIMUM OF 40% OF THE ADJACENT SPAN CAPACITY. - ALL RAILS, CLAMPS AND FASTENERS TO BE INSTALLED IN ACCORDANCE WITH THEIR RELEVANT SCHLETTER INC. - DOCUMENTATION. FASTENERS FIXED TO TIMBER MUST HAVE AN EDGE DISTANCE OF 5D, WHERE 'D' IS THE DIAMETER OF THE SCREW. - THIS IS IN COMPLIANCE WITH EDGE DISTANCES OUTLINED IN AS1720.1:2010 SECTION 4.3.4. - FASTENERS FIXED TO TIMBER FRAMING MUST USE A BREMICK VORTEX UNIVERSAL SCREW, WITH MINIMUM DIAMETER OF 6.2mm, AND A MINIMUM EMBEDMENT OF 35mm. - TIMBER PURLINS MUST HAVE A MINIMUM WIDTH OF 10D WHERE D IS THE DIAMETER OF THE TIMBER SCREW. - TIMBER PURLINS MUST HAVE A MINIMUM GRADE OF F7 AS DEFINED IN AS1720.1. - FASTENERS FIXED TO COLD FORMED STEEL PURLINS MUST HAVE AN EDGE DISTANCE OF 3D WHERE 'D' IS THE DIAMETER OF THE SCREW. THIS IS IN COMPLIANCE WITH EDGE DISTANCES OUTLINED IN AS4600:2-18 SECTION 5.4.3 - STEEL PURLINS MUST HAVE A MINIMUM BASE METAL EQUAL TO THE VALUE SPECIFIED IN THE TABLE. - STEEL PURLINS MUST HAVE A MINIMUM WITDTH OF 6D WHERE D IS THE DIAMETER OF THE STEEL SCREW. PARTRIDGE ENGINEERS Pty Ltd PREPARED DOCUMENTATION, PROJECT NUMBER 2021S0925, IS FOR THE EXCLUSIVE - USE BY SCHLETTER AUSTRALIA PTY LTD ONLY. - INSTALLATION VERIFICATION AND ASSOCIATED CERTIFICATION IS BY OTHERS. NO ALLOWANCE HAS BEEN MADE FOR HYDRAULIC, HAIL OR SNOW LOADING. - INSTALLATION OUTSIDE THE SPECIFIC PARAMETERS REQUIRES SPECIFIC ENGINEERING ANALYSIS. - INSTALLATIONS IN TERRAIN CATEGORY = 1.0, REDUCE EQUIVALENT TERRAIN CATEGORY 2.0 VALUES BY THE - FOLLOWING; Region A = 18% - Region B = 18% - Region C/D = Specific engineering review required. - REFER TO AS1170.2:2021 SECTION 4.2.1 FOR THE DETERMINATION OF TERRAIN CATEGORY. - SOLAR PANELS HAVE BEEN CHECKED FOR WIND LOADINGS AND SHOULD BE CERTIFIED BY THE MANUFACTURER - FOR THE VARIOUS SPANS AND WIND REGIONS. ALL SPANS IN THE TABLE MUST BE MULTIPLIED BY A REDUCTION FACTOR BASED ON THEIR POSITION ON THE ### **REDUCTION FACTORS FOR RAILS SUPPORTED BY LESS THAN 4 FASTENERS** SPANS FROM THE ABOVE TABLE CANNOT BE USED ON CONTINUOUS RAILS THAT ARE SUPPORTED BY LESS THAN 4 A-FRAMES. WHERE A RAIL IS SUPPORTED BY LESS THAN 4 A-FRAMES THE SPANS IN THE TABLE SHOULD BE MULTIPLIED BY THE BELOW FACTOR. RAIL SUPPORT REDUCTION FACTOR = 0.89 NOTE: RAIL MUST SPAN BETWEEN MIN TWO FASTENERS # REDUCTION FACTOR FOR SOLAR PANEL LOCATION ON ALL A-FRAME SPACINGS IN THE ABOVE TABLE MUST BE MULTIPLIED BY ONE OF THE BELOW FACTORS BASED ON THEIR LOCATION ON THE ROOF. CORNER ZONE: SPACINGS MUST BE MULTIPLIED BY 0.33 EDGE ZONE: SPACINGS MUST BE MULTIPLIED BY 0.5 INTERMEDIATE ZONE: SPACINGS MUST BE MULTIPLIED BY 0.66 CENTRAL ZONE: SPACINGS DO NOT NEED TO BE MULTIPLIED BY ANY FACTOR WHERE a = MIN(0.2d, 0.2b) if h/d or h/b 0.2, or 2h if h/d and h/b < 0.2 ROOF ZONES FOR ROOVES WITH PITCHES < 10° ROOF ZONE FOR ROOVES WITH PITCHES 10° #### SOLAR PANEL EXCLUSION ZONE & MOUNTING RESTRAINTS PANELS MUST NOT BE INSTALLED WITHIN A DISTANCE OF 2S FROM THE ROOF EDGE WHERE S IS THE GAP BETWEEN THE UNDERSIDE OF THE PANEL AND THE ROOF SURFACE (ROOF EDGE INCLUDES RIDGES WITH PITCH 10) THE EXCLUSION ZONE SHOWN ABOVE MUST BE MIN 200mm. THE GAP BETWEEN THE UNDERSIDE OF THE PANEL AND THE ROOF SURFACE MUST BE MIN 50mm AND MAX 300mm # **TERRAIN CATEGORY DEFINITIONS** AS1170.2 :2021 CLAUSE 4.2.1 TC1 - VERY EXPOSED OPEN TERRAIN WITH VERY FEW OR NO OBSTRUCTIONS, AND ALL WATER SURFACES TC2 - OPEN TERRAIN, INCLUDING GRASSLAND, WITH WELL SCATTER OBSTRUCTIONS HAVING HEIGHTS GENERALLY FROM 1.5m TO 5m, WITH NO MORE THAN TWO OBSTRUCTIONS PER HECTARE TC2.5 - TERRAIN WITH SOME TREES OR ISOLATED OBSTRUCTIONS, TERRAIN IN DEVELOPING OUTER URBAN AREAS WITH SCATTERED HOUSES, OR LARGE ACREAGE DEVELOPMENTS WITH MORE THAN TWO AND LESS THAN 10 BUILDINGS PER HECTARE TC3 - TERRAIN WITH NUMEROUS CLOSELY SPACED OBSTRUCTIONS HAVING HEIGHTS GENERALLY FROM 3m TO 10m. THE MINIMUM DENSITY OF OBSTRUCTIONS SHALL BE ATLEAST THE EQUIVALENT OF 10 HOUSE-SIZE OBSTRUCTIONS PER HECTARE TC4 - TERRAIN WITH NUMEROUS LARGE, HIGH (10m TO 30m TALL) AND CLOSELY SPACED CONSTRUCTIONS, SUCH AS LARGE CITY CENTRES AND WELL-DEVELOPED INDUSTRIAL COMPELXES. ## **ALTERATIONS TO SPAN TABLES FOR SOLAR PANEL SIZE** THIS SPAN TABLE IS FOR SOLAR PANELS OF SIZE 2100x1100mm, EACH RAIL SUPPORTS A SOLAR PANEL WIDTH OF 1050mm. THE SPACINGS SHOWN IN THE TABLES HAVE BEEN CALCULATED ASSUMING EACH PANEL IS SUPPORTED WITH TWO RAILS. THE SPANS IN THE TABLE CAN BE ALTERED FOR LARGER & SMALLER SOLAR PANELS USING THE FOLLOWING EQUATIONS. FOR SOLAR PANELS WITH WIDTH LARGER THAN 2100mm $$Span * \frac{2100}{y}$$ Where y = NEW SOLAR PANEL WIDTH IN mm FOR SOLAR PANELS WITH WIDTH SMALLER THAN 2100mm $$Span * \sqrt{\frac{2100}{y}}$$ WHERE y = NEW SOLAR PANEL WIDTH IN mm # **ALTERATIONS TO SPAN TABLES FOR ADDITIONAL RAILS** THIS SPAN TABLE IS FOR SOLAR PANELS OF SIZE 2100x1100mm. EACH RAIL SUPPORTS A SOLAR PANEL WIDTH OF 1050mm. THE SPACINGS SHOWN IN THE TABLES HAVE BEEN CALCULATED ASSUMING EACH PANEL IS SUPPORTED WITH TWO RAILS. THE SPANS IN THE TABLE CAN BE ALTERED FOR ADDITIONAL RAILS USING THE FOLLOWING EQUATION. $$Span * \sqrt{\frac{1050}{\left(\frac{2100}{n}\right)^2}}$$ WHERE n = THE TOTAL NUMBER RAILS SUPPORTING THE PANEL. RAILS MUST BE SPACED SO THAT THEY SUPPORT EVEN WIDTHS OF THE PANEL A FOR INFORMATION JW AKD 4/10/2023 By App. Date Rev Issue / Amendment PARTRIDGE STRUCTURAL PTY LTD ABN 73 002 451 925 Level 5, 1 Chandos Street, St Leonards NSW 2065 Australia t 612 9460 9000 f 612 9460 9090 e partridge@partridge.com.au w www.partridge.com.au SCHLETTER AUSTRALIA PTY LTD 2021S0925 A FRAME 30 DEGREE SETUP FIXING TO F7 SOFTWOOD USING 2/BREMICK VOTREX UNIVERSAL SCREWS 2100 MODULES ELECTRONIC SIGNATURE: THIS DRAWING HAS BEEN ASSIGNED AN ELECTRONIC SIGNATURE DO NOT SCALE DRAWINGS CODE. THE PRESENCE OF THIS CODE SIGNIFIES THAT THIS IS THE USE FIGURED DIMENSIONS CERTIFIED DRAWING ISSUED FOR CONSTRUCTION. Electronic Code Signature Date Designed JW Scale at A1 Drawn 04/10/2023 JW Job No. Drawing No. Revision 2021S0925